lunes, 3 de julio de 2017

Alteraciones Genéticas e Hipocrecimiento

La hipótesis original de Salmon y Daughaday postuló que la acción promotora del crecimiento sería mediada por factores de crecimiento similares a insulina (IGF) circulantes, en particular el tipo I (IGF-I) producidos en el hígado tras el estímulo de la hormona del crecimiento (GH) . Hoy sabemos que tanto la GH como el IGF-I ejercen directamente efectos estimulantes sobre la placa de crecimiento, y que la GH, además, es capaz de inducir la producción local de IGF-I, que, a su vez, actuaría mediante mecanismos paracrinos y autocrinos. Las deficiencias en IGF, en particular las relacionadas con el IGF-I, debidas tanto a una insuficiencia o resistencia a GH como a un déficit primario de IGF-I, se caracterizan por la ausencia total o relativa de IGF-I detectable en suero o plasma. La resistencia a la acción de IGF-I da lugar a un fenotipo similar, con la salvedad de presentar niveles normales o elevados de IGF-I. La deficiencia de IGF-I, independientemente de su causa, produce un fenotipo caracterizado por un hipocrecimiento armónico, facies de muñeca, frente abombada y puente nasal escasamente desarrollado. En la mayoría de los neonatos con deficiencias de IGF-I, la longitud al nacimiento es normal o ligeramente reducida. Sin embargo, el crecimiento posnatal cursa de forma claramente anormal debido a una reducción progresiva de la velocidad de crecimiento, especialmente a partir de los 6 meses de edad.

La complejidad del eje de la GH determina que sean muchos los mecanismos genéticos potenciales que puedan determinar una secreción o acción insuficiente de GH. Aunque la frecuencia del déficit de GH es difícil de establecer y puede variar en función de los criterios diagnósticos y origen étnico de la población en estudio, estudios recientes han estimado una prevalencia de déficit idiopático de GH de, al menos, 1/3.480 niños. Se considera que entre un 5-30 % de pacientes con deficiencia de GH tienen un familiar de primer grado también afectado, lo que sugiere una causa genética. El hecho de que sólo el 20 % de los casos esporádicos de deficiencia de GH se deban a factores ambientales o a deficiencias anatómicas hipotálamo-hipofisarias detectables mediante exploración por resonancia magnética, sugiere asimismo la posibilidad de que parte de los casos esporádicos tengan igualmente una causa genética. Se conocen al menos cuatro tipos mendelianos de deficiencia aislada de GH (DAGH). El tipo IA presenta un patrón de transmisión hereditaria autosómico recesivo y ausencia total de GH endógena. El tipo IB se transmite igualmente según un patrón autosómico recesivo con niveles endógenos de GH disminuidos, pero detectables. La deficiencia de GH tipo II es del tipo autosómico dominante y se caracteriza igualmente por niveles endógenos bajos de GH. La deficiencia tipo III se transmite ligada al cromosoma X y presenta igualmente niveles disminuidos de GH endógena. La deficiencia combinada de hormonas hipofisarias (DCHH), conocida anteriormente como panhipopituitarismo, se caracteriza por presentar junto a la deficiencia de GH, déficit adicionales en alguna o algunas de las demás hormonas hipofisarias. El patrón de transmisión hereditaria es variado, incluyendo tanto el autosómico recesivo como el ligado al X.

Un déficit de GH puede igualmente aparecer asociado con alteraciones del desarrollo embriológico causadas por anomalías monogénicas o cromosomopatías. En general, anomalías en el desarrollo de la línea media que afecten el desarrollo de la hipófisis o del hipotálamo pueden generar deficiencia de GH. Otras entidades clínicas a incluir en este apartado son la ausencia aislada de la glándula hipofisaria, anencefalia, holoprolosencefalia, algunos casos de displasia septo-óptica (síndrome de Morsier), el síndrome de ectrodactilia-displasia ectodérmica-labio leporino (EEC), anemia de Fanconi, síndrome de Bloom, deleción del brazo corto del cromosoma 18 (18p-), y cromosoma 18 en anillo.





HIPOCRECIMIENTO DEBIDO A DEFICIENCIA FAMILIAR AISLADA DE GH (DAGH)

Se han descrito cuatro formas diferentes que se distinguen en función del grado del déficit de GH, del patrón de transmisión hereditaria y de la respuesta al tratamiento con GH exógena. Las bases moleculares son diferentes.

DAGH IA

De incidencia desconocida, es la variante más intensa. Los pacientes presentan generalmente una longitud normal o ligeramente inferior a la normal en el nacimiento y pueden presentar episodios de hipoglucemia severa durante el período neonatal. Sin embargo, su patrón de crecimiento se ve seriamente afectado a partir de los 6 meses de vida extrauterina. Los niveles circulantes de GH son indetectables, tanto en condiciones basales, como tras estimulación mediante cualquiera de los fármacos conocidos. Se transmite según un modelo autosómico recesivo y, en la mayoría de los pacientes, consiste en una deleción homozigota del gen hipofisario de GH (GH1). La variante más frecuente (aproximadamente en el 70 % de los pacientes) consiste en una deleción de 6,7 kb, si bien también se han descrito deleciones de 7,6 kb, 7 kb y 45 kb, así como deleción doble en el cluster del gen de GH22.

Las diferencias en el origen geográfico de los pacientes y la heterogeneidad de los haplotipos puesta de manifiesto mediante análisis de RFLP (restriction fragment lenght polymorphism), sugiere que dichas deleciones representan recombinaciones independientes. Asimismo, en numerosas familias con miembros afectados por DAGH IA, se ha comprobado la existencia de consanguinidad, lo que indica que los miembros afectados heredaron dos alelos mutantes idénticos entre sí. Además de las deleciones, se han descrito otro tipo de mutaciones del gen de GH1 asociadas igualmente al pronunciado fenotipo característico de la IGHD IA y niveles indetectables de GH circulante. Dichas mutaciones generan en todos los casos alelos inoperantes de GH que producen proteínas truncadas cuyo destino más probable es la degradación intracelular.

DAGH IB

Se transmite de forma autosómica recesiva, y aparece asociada a niveles plasmáticos de GH bajos, pero detectables, en pruebas farmacológicas estándar. Estos pacientes suelen responder favorablemente a terapia con GH exógena. El resto de las funciones endocrinas no se distinguen de la normalidad y el fenotipo es menos acusado que en la DAGH tipo IA. Acontece, por lo general, en pacientes heterozigotos compuestos, que combinan la presencia de una deleción en un alelo con mutaciones que alteran la pauta normal de lectura en el otro, así como en homozigotos portadores de mutaciones en sitios de empalme (splice sites). Hasta el momento, no se han encontrado mutaciones en el gen de GHRH asociadas al fenotipo descrito, aunque sí en el gen del receptor de GHRH (rGHRH), lo que podría contribuir a establecer la base molecular de esta patología en algunos pacientes.

DAGH II

La DAGH tipo II presenta características clínicas idénticas y criterios diagnósticos similares a los asociados al tipo IB. El patrón de transmisión hereditaria es autosómico dominante, por lo que suele detectarse en uno de los progenitores y en uno o más de los hermanos. Estudios genéticos de ligamiento han indicado cosegregación de la DAGH II con el gen de GH1 en la mayoría de las familias, excluyendo cosegregación con el gen de GHRH en todas las familias estudiadas hasta la fecha. La alteración molecular causante de la DAGH tipo II ha sido descrita en varias familias no relacionadas entre sí. Curiosamente, en todos los pacientes afectados se ha identificado una mutación monoalélica en el intrón 3 del gen de GH1. Estas variaciones afectan a segmentos de la secuencia (“splice enhancers”) que son críticos para el normal procesamiento del ARNm y el mantenimiento de la estructura secundaria del ARN heteronuclear.

Todas las mutaciones en el intrón 3 alteran el procesamiento postranscripcional del ARNm de la misma forma, provocando la pérdida del exón 3 del gen de GH1 en el ARNm maduro. La proteína mutante resultante es la descrita previamente como GH de 17,5 kb, carente de los aminoácidos 37-71, entre los que se incluye un residuo de cisteína. Aunque el efecto dominante negativo de estas mutaciones no se ha definido claramente todavía, es posible que la proteína mutante llegue a formar dímeros con la GH normal mediante la constitución de enlaces disulfuros entre los residuos libres de cisteína. Nuevas mutaciones han sido identificadas recientemente siendo la consecuencia de las mismas la sustitución de un residuo de Arg por His (R183H), causando una nueva forma de DAGH tipo II que se transmite según un patrón autosómico dominante. Los estudios moleculares sugieren que la deficiencia es debida a un bloqueo de la secreción regulada de GH en las somatotropas.

DAGH III

Son muy pocos los casos descritos de familias que presenten una deficiencia aislada de GH con un patrón recesivo de transmisión hereditaria ligado al X. En todos los casos de varones afectados, la hipogammaglobulinemia es una constante. El tratamiento de los mismos con GH se ha visto acompañado de un incremento en los niveles de linfocitos B, así como de los niveles plasmáticos de inmunoglobulinas. El análisis genético de algunas de las familias afectadas indica que la combinación de una agammaglobulinemia ligada al X (XLA) y la deficiencia aislada de GH podrían ser debidas a una alteración del gen BTK (Bruton’s tyrosine kinase gene) localizado en Xq21.3-q22 y/o de un gen contiguo, probablemente implicado en la expresión de GH. No obstante, en dos familias afectadas se ha podido demostrar la existencia de mutaciones puntuales en el gen de BTK como la única causa responsable de la inmunodeficiencia y del déficit de GH. Existen probablemente otras formas de DAGH ligadas al X que podrían explicar la preponderancia de varones afectados por DAGH con respecto a las mujeres. De hecho, se conoce la existencia de distintos loci en el cromosoma X que participan en la regulación de GH y de pacientes que presentan una DAGH asociada con anomalías en distintas regiones del cromosoma X. Dichas anomalías incluyen una deleción intersticial del locus Xp22.3 y una duplicación de Xq13.3-q21.2.







HIPOCRECIMIENTO DEBIDO A DEFICIENCIA COMBINADA DE HORMONAS HIPOFISARIAS (DCHH)

La deficiencia combinada de hormonas hipofisarias, anteriormente conocida como panhipotuitarismo, se caracteriza por la existencia de deficiencias adicionales a la de GH en alguna o algunas de las demás hormonas antehipofisarias (TSH, ACTH, FSH y LH). Aunque la mayoría de los casos son esporádicos, también se han identificado familias afectadas con patrones de transmisión hereditaria autosómico recesivo (tipo I) y ligado al X (tipo II). Alguno de los casos del tipo autosómico recesivo presentan alteraciones anatómicas de la silla turca que pueden consistir tanto en reducciones como en ensanchamientos de la misma. El grado en que las distintas hormonas hipofisarias se ven afectadas es un factor significativamente variable tanto intra- como interfamiliar. Los loci responsables de algunos de los casos conocidos de esta enfermedad hereditaria se han podido establecer gracias a la existencia y caracterización de modelos animales de la enfermedad (en ratones) causada por mutaciones naturales.

HIPOCRECIMIENTO DEBIDO A ALTERACIONES EMBRIOLÓGICAS

Entre el amplio número de alteraciones embriológicas y síndromes genéticos que aparecen asociados con déficit de GH, sólo se conocen las causas moleculares subyacentes en algunos de ellos.

Holoprosencefalia

Es una malformación de la línea media que aparece asociada frecuentemente con la presencia de labio leporino y alteraciones del desarrollo del tracto olfatorio, microoftalmía, y ciclopía, así como acompañada de déficit psicológicos y disfunciones hipotalámicas de distinto grado. Puede cursar también con una deficiencia aislada de GH o combinada de hormonas hipofisarias. La mayoría son casos esporádicos o debidos a cromosomopatías (trisomía 13, 13q-, 18p-, 7q-), pero un 30 % de los casos se transmiten hereditariamente según un patrón autosómico dominante o recesivo. Estudios recientes han demostrado que mutaciones identificadas en genes que codifican proteínas señalizadoras de la migración neuronal, tales como ZIC2 en 13q3259, y Sonic Hedgehog en 7q3660,61, son responsables de dos tipos de holoprosencefalia. Al menos dos genes adicionales aparecen implicados en esta patología, el SIX3, localizado en el cromosoma 2p21, codifica un factor de transcripción humano esencial para el desarrollo del ojo, y el TGIF (“transforming growth interacting factor”) en 18p11.362.

Síndrome de Rieger

Se caracteriza por una displasia del iris, hipodontia, atrofia óptica y deficiencia ocasional de GH. Su patrón de transmisión hereditaria es autosómico dominante con expresión variable. Es un síndrome heterogéneo en el que al menos dos loci aparecen implicados: el gen de PITX2, localizado en 4q2564, y el RIEG2 (13q14)65, cuya identidad se desconoce con exactitud. PITX2 parece desempeñar una función relevante en el desarrollo de numerosos órganos, además de participar en la determinación de la asimetría bilateral.

Displasia septoóptica o Síndrome de Morsier

Se caracteriza por una hipoplasia del nervio óptico que puede aparecer acompañada por anomalías del septum pellucidum y del cuerpo calloso. El grado de deficiencia hipofisaria es variable, pudiendo presentarse tanto con un déficit aislado de GH como con situaciones de panhipopituitarismo. La mitad de los pacientes presenta, además, diabetes insípida. La alteración parece radicar en el hipotálamo. El síndrome de Morsier es casi siempre esporádico, si bien algunos casos sugieren un modo de transmisión hereditaria autosómico recesivo. Recientemente, se ha sugerido que una mutación en el gen HESX1 podría ser la causa molecular en algunos de estos pacientes.

Síndrome de ectrodactilia-displasia ectodérmica-labio leporino

También conocido como síndrome EEC. Según se ha podido demostrar, puede transmitirse tanto de forma autosómica dominante (EEC1 [7q11.2-q21.3]) como recesiva (EEC2). El cuadro clínico se indica en la denominación del síndrome y en algunos pacientes puede aparecer asociado a un déficit de GH y ausencia del septum pellucidum. Hace unos años se identificaron mutaciones en el gen de p63 en 40 de un total de 43 individuos afectados por EEC. El gen p63 es un homólogo del supresor tumoral p53. En humanos se expresa en el epitelio basal escamoso y puede codificar formas tanto transactivantes como dominantes inhibitorias. Con la excepción de una mutación que provoca un error de lectura en el exón 13, todas las mutaciones identificadas son mutaciones “missense” que afectan a los codones 204, 227, 279, 280 y 304 de la proteína. El alto índice de detección en pacientes afectados (40/43), junto con la consistencia de las mutaciones detectadas en lo que se refiere al dominio de la proteína afectado por las mismas, sugieren que las mutaciones en el gen de p63 son responsables del fenotipo asociado a EEC.

Anemia de Fanconi

Se transmite de forma autosómica recesiva y se caracteriza por la presencia de anemia, leucopenia, trombocitopenia, hiperpigmentación de la piel, anomalías del pulgar y malformaciones renales y cardíacas. En un estudio publicado recientemente por Wajnrajch et al se detectaron anomalías endocrinas en un 81% de los pacientes afectados. Entre estas se incluyen talla baja, deficiencia de GH, hipotiroidismo, intolerancia a glucosa, hiperinsulinemia, y/o diabetes mellitus. En el mismo estudio, en un 44% de los pacientes se detectó una respuesta subnormal a GH, y en un 36 %, un hipotiroidismo manifiesto o compensado. Curiosamente, el 100 % de los pacientes estudiados presentaba anomalías en el patrón nocturno de secreción espontánea de GH. El mecanismo molecular responsable de estas alteraciones se desconoce por el momento. La anemia de Fanconi se clasifica en 8 grupos diferentes en función del complemento celular (A-H) asociado. Probablemente la anomalía genética presente en cada uno de los grupos es específica y diferente para cada uno de ellos. El gen afectado ha sido identificado en los grupos A, C, D2, E, F y G y se sabe que todas las proteínas afectadas intervienen en la misma cascada señalizadora. El espectro de mutaciones caracterizadas hasta el momento en el grupo G, el más estudiado, es muy heterogéneo, incluyendo mutaciones sin sentido, “missense”, y mutaciones que afectan los puntos de conexión (“splice site mutations”). No obstante, el espectro de dichas mutaciones sugiere la existencia de un dominio carboxiterminal en la FANCG que parece ser imprescindible para la complementación de las células FA-G y para el correcto ensamblaje del complejo proteico formado por FANCA/FANCG/FANCC. Asimismo, se sabe que el gen implicado en el grupo D (FANCD) está localizado en el cromosoma 3 (3p22-26).

Síndrome de Bloom

Se transmite de forma autosómica recesiva y se caracteriza por un crecimiento armónico pre- y posnatal deficiente. Cursa con exantema telangiectásico facial, hipersensibilidad a la luz, hipo e hiperpigmentación de la piel y predisposición a malignidad. Aunque el gen responsable, BLM, ha sido localizado en el brazo largo del cromosoma 15 (15q26.1) mediante clonación posicional, el mecanismo responsable de la deficiencia de GH está aún por aclarar.

Síndrome de Aarskog (displasia faciogenital)

Talla baja, hipertelorismo y anomalías del escroto, junto con macrocefalia y anomalías faciales y esqueléticas son las principales características de este síndrome que presenta un patrón de transmisión hereditario ligado al X. Parece ser causado por mutaciones en el gen FGD1 (“faciogenital dysplasia”) (Xp11.21), codificante de una proteína mediadora de la traducción de señales importantes para el crecimiento durante el desarrollo. Estudios recientes sobre los patrones de expresión de FGD1 realizados en ratón, han demostrado que FGD1 se expresa prevalentemente en tejido esquelético, más concretamente en el pericondrio, condrocitos y fibroblastos de la cápsula articular. La inducción de la expresión de FGD1 es coincidente en el tiempo con el comienzo de la osificación, lo que sugiere que dicho gen desempeña un papel importante en el proceso de osificación y formación de los huesos.





HIPOCRECIMIENTO DEBIDO A ANOMALÍAS DE LOS CROMOSOMAS SEXUALES

Existen al menos 8 genes localizados en la región seudoautosómica (PAR1) del brazo corto de los cromosomas sexuales. La región PAR1 tiene una extensión de 2.500 kb y su secuencia en los cromosomas X e Y es homóloga en un 99 %. La asociación entre un fenotipo de talla baja y la presencia de deleciones en el brazo corto de los cromosomas X o Y, sugiere la presencia de un gen regulador de la estatura en la porción distal de 700 kb de PAR1. El gen SHOX (short stature homeobox-containing gene) ha sido clonado y aislado a partir de los 170 kb que constituyen la región crítica de PAR1. SHOX codifica dos proteínas de 292 y 225 aminoácidos, respectivamente. En 36 pacientes con talla baja y que presentan reorganizaciones en Xp22 o Yp11.3, se ha podido comprobar que SHOX no se expresa correctamente. Rao et al132, hallaron una mutación “nonsense” en el gen SHOX de 91 pacientes con talla baja idiopática, sin ninguna otra sintomatología aparente. La misma mutación fue descrita en otros cuatro miembros de la misma familia, completando un total de tres generaciones afectadas por la talla baja idiopática. La causa de la talla baja en el síndrome de Turner podría tener su origen, al menos en parte, en la pérdida del gen SHOX, como consecuencia de la ausencia de un cromosoma X.

Asimismo, la identificación de pacientes con talla baja y deleción del brazo largo del cromosoma Y (46, XY, Yq-) habla en favor de la posible presencia en dicho brazo de
uno o más genes reguladores del crecimiento. Las correlaciones clínico-moleculares observadas en pacientes varones con deleciones parciales de Yq han permitido la localización de un gen llamado GCY (growth control in the Y, también conocido como: growth specific gene in the Y chromosome) en Yq, próximo al centrómero. El estudio molecular de la translocación cromosómica (X;Y[46,X,der(X)t(X;Y)(p22.3;q11.2)]) en una mujer con estatura normal que presentaba una deleción en la región seudoautosómica (Xp22.3), sugiere que el gen GCY en Yq puede, al menos parcialmente, compensar el déficit de crecimiento causado por la ausencia del gen SHOX. La presencia adicional de otros genes moduladores del crecimiento en los cromosomas sexuales se considera muy probable, por lo que la actividad investigadora en esta linea de trabajo es por el momento muy activa.

HIPOCRECIMIENTO POR CAUSAS DE ORIGEN PRENATAL

Las causas de retraso en el crecimiento intrauterino son multifactoriales y muy complejas, incluyendo defectos nutritivos, exposición a agentes tóxicos, deficiencias placentarias, anomalías cromosómicas y otras alteraciones genéticas. El hipocrecimiento primordial constituye un retraso en el crecimiento de origen prenatal que continúa durante el período posnatal. Se subdivide en dos grandes grupos en función de si aparece o no asociado a microcefalia. Una forma específica de hipocrecimiento primordial no asociado a microcefalia es el Síndrome de Silver-Russel. Presenta un fenotipo cráneo-facial característico, con rostro triangular, orejas prominentes, posible asimetría de las extremidades y clinodactilia del quinto dedo. La causa del síndrome es presumiblemente heterogénea y la mayoría de los casos conocidos se deben, probablemente, a mutaciones dominantes de novo. Se ha postulado la posible participación de un locus localizado en 17q25 debido a la recurrencia de anomalías en dicho cromosoma. Sin embargo, el primer indicio sólido sobre la base molecular del Síndrome de Silver-Russel se obtuvo a partir de la observación de una disomía materna uniparental del cromosoma 7 en un paciente con una mutación homozigota que produce fibrosis quística, para la que la madre era exclusivamente portadora. Dicho paciente, al igual que otros descritos posteriormente, presentaba un retraso del crecimiento intrauterino y crecimiento posnatal que no podía justificarse por la fibrosis quística. La disomía materna uniparental del cromosoma 7 ha sido confirmada posteriormente en un 10 % de los pacientes con hipocrecimiento primordial del tipo asociado al Síndrome de Silver-Russel. Por lo tanto, dichas observaciones indican la existencia en el cromosoma 7 de uno o más genes que actúan como reguladores del crecimiento y que pueden sufrir impronta gamética. Podría tratarse tanto de genes estimulantes del crecimiento expresados exclusivamente por el cromosoma paterno, como de genes inhibidores del crecimiento, expresados exclusivamente por el cromosoma materno.





La observación de un caso familiar de Síndrome de Silver-Russel en donde, tanto la madre como la hija presentaban una duplicación en tándem en la región 7p13-p11.2, ha permitido acotar la región crítica del cromosoma 7 a un segmento que incluye los genes IGFBP1, IGFBP3 y GRB10 (growth factor receptor binding protein 10). La caracterización molecular de un segundo paciente, descrito posteriormente, con una duplicación similar, demostró que los genes mencionados anteriormente se encontraban de hecho englobados en la región afectada y que la región duplicada era de origen materno. Por consiguiente, es muy probable la existencia en dicha región del cromosoma 7 de uno o más genes inhibidores del crecimiento que son expresados exclusivamente por el cromosoma materno. Un incremento en la expresión de éste(os) gen(es) causado por una disomía uniparental materna o bien por duplicaciones maternas de la región crítica, causaría un retraso del crecimiento. El gen GRB10 es un candidato óptimo por diferentes razones:


1. Se encuentra englobado dentro de la región crítica afectada por las duplicaciones; 
2. El gen homólogo del ratón (meg1/Grb10, cromosoma 11) es expresado exclusivamente por el cromosoma materno, y
3. Está probablemente implicado en los defectos del crecimiento observados en ratones con duplicaciones del cromosoma 11 y deficiencia recíproca.

La función conocida de la proteína GRB10 habla en favor de un papel regulador del crecimiento para la misma. La unión de la GRB10 al receptor de insulina y al receptor de IGF tipo 1 (IGFR1) mediante un dominio SH2, inhibe la actividad tirosina kinasa asociada al receptor y, a su vez, implicada en las acciones promotoras del crecimiento de la insulina, IGF-I e IGF-II.


Para aclarar cualquier duda, si quiere más información o si quiere solicitar una consulta, no dude en contactar con las consultas externas del Hospital Dr. Gálvez (Málaga) por correo electrónico en la dirección consultas@hospitalgalvez.com o llamando al teléfono 952 062 808 o en Clínica Ochoa (Marbella) en el correo info@clinicaochoa.com o llamando al 952 861 400.




No hay comentarios:

Publicar un comentario